

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

but note that specific mark schemes may sometimes overflue these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$				
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 \;, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$				
		their $\frac{\mathrm{d}y}{\mathrm{d}t}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t		
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	or their $\frac{dy}{dt}$ mu	Iltiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1	
			ed or un-simplified, in terms of t. See note.	A1 isw	
	Award Special Case 1st M1 is	both $\frac{dx}{dt}$ and $\frac{dy}{dt}$	are stated correctly and explicitly .	[2]	
			for part (a) in part (b).		
(a) Way 2	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.				
way 2	x+4 dx (x+4) (3i)		Correct un-simplified or simplified answer, in terms of t. See note.		
				[2]	
(b)	$\left\{ t = \frac{1}{2} \Rightarrow \right\} P\left(-\frac{5}{2}, -7\right)$	x = -	$x = -\frac{5}{2}$, $y = -7$ or $P(-\frac{5}{2}, -7)$ seen or implied.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\left(\frac{1}{2}\right)^2}$ and either	Some	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$		
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$	whi	ch contains t in order to find $m_{\rm T}$ and either		
		appli	applies $y - (\text{their } y_p) = (\text{their } m_T)(x - \text{their } x_p)$		
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c	or finds	or finds c from (their y_p) = (their m_T)(their x_p) + c		
	So, $y = (\text{their } m_{\text{T}})x + \text{"}c\text{"}$	and us	ses their numerical c in $y = (\text{their } m_{\text{T}})x + c$		
	T : $y = 8x + 13$		y = 8x + 13 or $y = 13 + 8x$		
		neir m_T must be n	numerical values in order to award M1	[3]	
(c)	$\left\{ t = \frac{x+4}{3} \implies \right\} y = 5 - \frac{6}{\left(\frac{x+4}{2}\right)}$		An attempt to eliminate <i>t</i> . See notes.	M1	
Way 1	(3)		Achieves a correct equation in x and y only	A1 o.e.	
		<u>-18</u> 4			
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$		$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso	
				[3]	
(c)	$\begin{cases} t = 6 \\ $		An attempt to eliminate t . See notes.	M1	
(c) Way 2	$\left\{ t = \frac{6}{5 - y} \implies \right\} x = \frac{18}{5 - y} - 4$		Achieves a correct equation in x and y only	Al o.e.	
	\Box $(x+4)(5-y) = 18 \Box$ $5x - xy +$				
	$\left\{ \Box \ 5x + 2 = y(x+4) \right\} \text{ So, } y = \frac{5x-4}{x+4}$	$\left\{\frac{-2}{4}, \left\{x > -4\right\}\right\}$	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso	
				[3]	
	Note: Some or all of the wo	ork for part (c) car	be recovered in part (a) or part (b)	8	

1. (c) Way 3	$y = \frac{3at - 4}{3t - 4}$	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \square a = 5$	A full method leading to the value of <i>a</i> being found $y = a - \frac{4a - b}{3t} \text{ and } a = 5$	M1 A1			
			$y-u-\frac{1}{3t}$ and $u-3$	Al			
	$\frac{4a-b}{3} = 6$	$\Rightarrow b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1			
				[3]			
		Question 1 No	otes				
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1					
	Note	You can ignore subsequent working following or	n from a correct expression for $\frac{dy}{dx}$ in t	terms of <i>t</i> .			
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$) is M0.				
	Note	Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.					
	Note	Final A1: You can ignore subsequent working following on from a correct solution.					
(c)	Note	 1st M1: A full attempt to eliminate t is defined as either rearranging one of the parametric equations to make t the subject and substituting for t in the other parametric equation (only the RHS of the equation required for M mark) rearranging both parametric equations to make t the subject and putting the results equal to each other. 					
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.					

Number			Scheme			Notes	Marks	
2.	$\left\{ (2+kx)^{-3} \right.$	$x^3 = 2^{-3} \left(1 + \frac{k}{2} \right)^3$	$\left(\frac{x}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{k}{2!}\right)$	$\left\{\frac{x}{2}\right\}^2 + \ldots\right\}, k$	> 0		
(a)	$\left\{A=\right\}\frac{1}{8}$	$\frac{1}{8}$ or 2^{-3} or 0.125, clearly identified as A or as their answer to part (a)						
			Uses	s the x^2 term of the	e binomial expa	ansion to give		
			either $\frac{(-3)^2}{2}$	$\frac{9(-4)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or	$\left(\frac{kx}{2}\right)^2$ or $\frac{(-1)^2}{2}$	$\frac{(-3)(-4)}{2}$ or 6	M1	
(b)	$\left(\frac{1}{8}\right)\frac{(-3)(-2)}{2!}$	$\left(\frac{-4}{2}\right)^2$	either (their A	$(-3)(-4)\left(\frac{k}{2}\right)^2$ or		2: (2)		
						(their A) \square 1,	M1 o.e.	
			or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or	or $(2^{-5})\frac{(-3)(-4)}{2!}$	$(kx)^2$ or $(2^{-5})^{-1}$	$\frac{(-3)(-4)}{2!}(k)^2$		
	$\left\{ \text{So,} \left(\frac{1}{8}\right) \right\} = \left(\frac{1}{8}\right)^{\frac{1}{2}}$	$\frac{-3)(-4)}{2!} \left(\frac{k}{2}\right)^{k}$	$= \frac{243}{16} \Rightarrow \frac{3}{16}k^2 = \frac{243}{16}$	$\frac{3}{3} \Rightarrow k^2 = 81$				
	So, $k =$					k = 9 cao	A1 cso	
(-)		Not	te: $k = \pm 9$ with no refe		•	4	[3]	
(c)				term of the binom	_	-		
	$\left(\frac{1}{8}\right)^n (-3)$	$\left(\frac{k}{}\right)$	$(\text{their } A)(-3) \left(\frac{\kappa}{2}\right)$	or (their A)(-3)	$\left(\frac{\kappa x}{2}\right)$; where	(their A) \Box 1,	M1	
	(8)	(2)		or $(2)^{-4}(-3)(k)$	or $(2)^{-4}(-3)($	$(kx) \text{ or } -\frac{3k}{16}$		
	$ \begin{cases} So, B = \end{cases} $	$\left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	$\Rightarrow \left. \begin{array}{c} B = -\frac{27}{16} \end{array} \right.$		$-\frac{27}{16}$ or $-1\frac{11}{16}$	or -1.6875	A1 cso	
							[2]	
			Oue	estion 2 Notes			6	
	NOTE IN	N THIS QUE	ESTION IGNORE LAI		IARK ALL PA	ARTS TOGET	THER.	
	Note (2	$(2+kx)^{-3} = \frac{1}{8}$	$\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 + \dots\right)$	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k$	$x^2x^2 + \dots$			
	Note W	riting down	$ \left\{ \left(1 + \frac{kx}{2} \right)^{-3} \right\} = 1 + (-3) $	$0\left(\frac{kx}{2}\right) + \frac{(-3)(-3-2)}{2!}$	$\frac{-1}{2}\left(\frac{kx}{2}\right)^2+\dots$			
	ge	ets (b) 1st M1						
	Note W	riting down	$\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-1)^{-3} \right)$	$3)\left(\frac{kx}{2}\right) + \frac{(-3)(-3)}{2!}$	$\frac{-1}{2}\left(\frac{kx}{2}\right)^2 + \dots$)		
	ge	gets (b) 1 st M1 2 nd M1 and (c) M1						
	Note W	riting down	$\left\{ (2+kx)^{-3} \right\} = 2^{-3} + (-3)^{-3}$	$(2^{-4})(kx) + \frac{(-3)(-2)(-2)}{2}$	$\frac{-4)}{(2^{-5})(kx)^2}$			
	ge	ets (b) 1 st M1	2 nd M1 and (c) M1					
	Note W	riting down	$\left\{ (2+kx)^{-3} \right\} = (\text{their } A)$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(}{}$	$\frac{-3)(-3-1)}{2!} \left(\frac{k}{2}\right)$	$\left(\frac{x}{2}\right)^2 + \dots$		
	wl wl	here (their A	1) \Box 1, gets (b) 1 st M1 2	nd M1 and (c) M1				

		Question 2 1 totes
2. (b), (c)	Note	(their A) is defined as either
		• their answer to part (a)
		• their stated $A =$
		• their " 2^{-3} " in their stated $2^{-3} \left(1 + \frac{kx}{2}\right)^{-3}$
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1
	Note	Give M0 in part (c) if (their A) = 1
2. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$
	Note	Award A0 for $B = -\frac{27}{16}x$
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.
	Note	The A1 mark in part (c) is for a correct solution only.
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8}\left(1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^2+\ldots\right) = \frac{1}{8}-\frac{3k}{8}x+\frac{3k^2}{4}x^2+\ldots$
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0
2. (b), (c)	Note	$^{-3}C_0(2)^{-3} + ^{-3}C_1(2)^{-4}(kx) + ^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated
		gets (b) 1 st M0 2 nd M0 and (c) M0

Number	Scheme					Notes			Marks		
	x	0	0.2	0.4	4	0.6	0.8	1	6		
3.	y	2	1.8625426	1.718	330	1.56981	1.41994	1.27165	$y = \frac{6}{(2 + 1)^2}$	e^x)	
(a)	$\left\{ \text{At } x = 0 \right\}$	0.2, y	= 1.86254 (5	5 dp)					1	1.86254	B1 cao
	`	ĺ	Note: Look	for this va	lue o	on the giver	table or in	their workir	ıg.		[1]
								Outside	brackets $\frac{1}{2}$	$- \times (0.2)$	
	1									,	B1 o.e.
(b)	$\frac{1}{2}(0.2)[2$	+1.271	65 + 2 (their 1.	86254 + 1.7	71830) + 1.56981 -	+ 1.41994)]		or $\frac{1}{10}$ or	$\frac{1}{2} \times \frac{1}{5}$	
	_							For str	ructure of		N / 1
							T	10130	detare or	<u> </u>	M1
	$\left\{=\frac{1}{2}(1-1)\right\}$	6.4128	33) = 1.6412	83 = 1.641	3 (4	dp)		anything tha	at rounds to	1.6413	A1
	[10 `		´ J								[2]
(c)	(_x		1								[3]
	$\begin{cases} u = e^x \end{cases}$		<u> </u>							1	
	$\frac{\mathrm{d}u}{1} = \mathrm{e}^x$	or $\frac{du}{dt}$	$= u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} =$	$=\frac{1}{n}$ or da	u = u	dx etc., an	$\mathbf{d} = \frac{6}{\sqrt{x}}$	$\frac{1}{2}$ dx =	$\frac{6}{12}$ du	See	B1 *
				и			<u> </u>			notes	
	` ′		$e^0 \square \underline{a=1}$						nd b = e on		B1
	$\{x=1\}$		$e^1 \square \underline{b} = e$			OT 1		r evidence of		$d \rightarrow e$	[0]
		N	OTE: 1 st B1 NOTE: 2 nd					work in par ork in part ([2]
(d)	6	\overline{A}								Q	
Way 1	$\overline{u(u+2)}$	$\cdots \overline{u}$	$+\frac{B}{(u+2)}$	Writing $\frac{6}{u(u+2)} \dots \frac{A}{u} + \frac{B}{(u+2)}$, o.e. or $\frac{1}{u(u+2)} \dots \frac{P}{u} + \frac{Q}{(u+2)}$,				M1			
	□ 6	A(u+2)	(2) + Bu	o.e., and	l a co	mplete met		ding the valu			
	0 =	4 0	_	Roth t	hair	A = 3 and		their B (or their -3 . (Or their			
	$u = 0 \square$ $u = -2 \square$			Dom t					-		A1
	u = -2	<i>D</i> =	=-3		Q	$=-\frac{1}{2}$ with		of 6 in front o			
	6	— du =	$= \int \left(\frac{3}{u} - \frac{3}{(u+1)^2}\right)^{\frac{3}{2}}$	$\frac{3}{2}$			Integrat	$\frac{M}{u} \pm \frac{N}{u \pm \frac{N}{u}}$	$\frac{1}{k}$, M, N	, $k \square 0$;	
	$\int u(u+1)$	2) "	$\int \int u (u + u) du$	-2) Jan		(i.e. <i>a</i>		partial fraction			M1
		_	$=3\ln u-3\ln(1)$	u ± 2)		,	_	$u\ln(\beta(u\pm k))$			
			$= 3\ln a - 3\ln a$ $= 3\ln 2u - 3\ln a$		Int	egration of		is correctly		_	A1 ft
							1	from their M	and from t	their <i>N</i> .	
	$\int So [3lr]$	1u-3	$\ln(u+2)$ ₁					dependent o			
			(e+2) $-(3 lr)$	$1-3\ln 3$		(or their b	and their a .	where $b > 0$	es limits of $b \square 1, a > a$		dM1
			/ (,		of 1 and 0 in			
	[Note: A proper consideration of the limit of $u = 1$ is required for this mark] or applies limits of 1 and 0 in x and subtracts the correct way round.										
	= 3 - 3 lr	$\frac{-}{(e+2)}$) + 3ln 3 or	3(1-In(e	<u></u> + 2) -	+ ln 3) or	$3+3\ln\left(\frac{3}{2}\right)$	<u></u>			
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{or} 3(1 - \ln(e+2) + \ln 3) \text{or} 3 + 3\ln\left(\frac{3}{e+2}\right)$					A1 cso					
	or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$ or $3 - 3\ln\left(\frac{e+2}{3}\right)$ or $3\ln\left(\frac{3e}{e+2}\right)$ or $\ln\left(\frac{27e^3}{(e+2)^3}\right)$						AI CSU				
	- J.III	e+2/					(* /	((0 : 2)3/		
						ace of e fo					[6]
			al A0 for 3-							14- 0	12
			al A0 for 3-						*		
	note: G	ive iina	al A0 for 3ln	c-3111(e+	· ∠) +	· Jiii J, wne	ie sine na	s not been si	припеа to	3	

3. (b)	Note	M1: Do not allow an extra y-value or a repeated y value in their []							
		Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of							
		awrt 1.6413, in which case both M1 and A1 can be scored.							
		A1: Working must be seen to demonstrate the use of the trapezium rule.							
		(Actual area is 1.64150274)							
		Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a) Award B1M1A1 for							
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$							
	Bracke	ting mistakes: Unless the final answer implies that the calculation has been done correctly							
		B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)							
	Award 1	B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994)$ (=13.468345)							
	Award 1	B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)							
		ntive method: Adding individual trapezia							
	Area ≈ ($0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$							
	= 1	1.641283							
	B1	0.2 and a divisor of 2 on all terms inside brackets							
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2							
	A1	anything that rounds to 1.6413							
3. (c)	1st B1	Must start from either							
		• $y dx$, with integral sign and dx							
		• $\frac{6}{(e^x + 2)} dx$, with integral sign and dx							
		• $\frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$							
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$							
		and end at $\frac{6}{u(u+2)}$ du, with integral sign and du, with no incorrect working.							
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\frac{6}{(e^x + 2)} dx = \frac{6}{u(u + 2)} du$ is sufficient for 1st B1							
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$							
	Note	You can also give the 1st B1 mark for using a reverse process. i.e.							
		Proceeding from $\frac{6}{u(u+2)}$ du to $\frac{6}{(e^x+2)}$ dx, with no incorrect working,							
		, , , , , ,							
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$							
3. (d)	Note	Give final A0 for $3-3\ln(e+2)+3\ln 3$ simplifying to $1-\ln(e+2)+\ln 3$							
		(i.e. dividing their correct final answer by 3)							
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.							
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0							
	Note	$\left[-3\ln(u+2) + 3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0							

	Question 3 Notes Continued						
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.					
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1					
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.					
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.					
	Note	Award M0A0M1A1ft for a candidate who writes down					
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$					
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.					
	Note Award M0A0M0A0 for a candidate who writes down						
		$\frac{6}{u(u+2)} du = 6\ln u + 6\ln(u+2) \text{ or } \frac{6}{u(u+2)} du = \ln u + 6\ln(u+2)$					
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.					
	Note	Award M1A1M1A1 for a candidate who writes down					
		$\frac{6}{u(u+2)} \mathrm{d}u = 3\ln u - 3\ln(u+2)$					
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.					
	Note	If they lose the "6" and find $u(u+2)$ du we can allow a maximum of M1A0M1A1ftM1A0					

	Question 3 Notes Continued								
3. (d) Way 2	$\left\{ \int \frac{6}{u^2 + 2u} du = \int \frac{3(2u + 2)}{u^2 + 2u} du - \int \frac{6u}{u^2 + 2u} du \right\}$								
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	u $\frac{\pm c}{i}$	$\frac{u(2u+2)}{u^2+2u}\left\{\mathrm{d}u\right\} $	$\pm \left[\frac{\delta}{u+2} \left\{ \mathrm{d}u \right\},\right]$	$\alpha, \beta, \delta \neq 0$	M1			
	$\int u + 2u \qquad \int u + 2$			Correc	t expression	A1			
		Integrates $\frac{\pm I}{I}$	$\frac{M(2u+2)}{u^2+2u} \pm \frac{N}{u\pm \frac{1}{2}}$	$\frac{N}{\equiv k}, M, N, k \square$	0, to obtain				
•	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$	any on	$e ext{ of } \pm \lambda \ln(u^2 + t^2)$	$\pm 2u$) or $\pm \mu \ln$	$(\beta(u\pm k));$ $\lambda, \mu, \beta \square 0$	M1			
		Integration of both terms is correctly followed through from their <i>M</i> and from their <i>N</i>			A1 ft				
	$\begin{cases} \operatorname{So}, \left[3\ln(u^2 + 2u) - 6\ln(u + u) \right] \end{cases}$	$\left(2\right)^{e}_{1}$	dependent on the 2^{nd} M mark Applies limits of e and 1 (or their <i>b</i> and their <i>a</i> , where $b > 0$, $b \square 1$, $a > 0$) in u			dM1			
	$= (3\ln(e^2 + 2e) - 6\ln(e + 2))$	$-\left(3\ln 3 - 6\ln 3\right)$	or applies limits of 1 and 0 in <i>x</i> and subtracts the correct way round.						
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	- 3ln3	$3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$			A1 o.e.			
					ı	[6]			
3. (d)	Applying $u = \theta - 1$								
Way 3	$\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta - 1)^{1+e}} du = \frac{1}{2} \int_{2}^{1+e} \frac{6}{(\theta - 1)^{1+e}$	$\frac{6}{\theta^2 - 1} \mathrm{d}u = \left[3 \ln \frac{1}{2} \right]$	$\left(\frac{\theta-1}{\theta+1}\right)\bigg]_2^{1+e}$		M1A1M1A1				
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-e}{2+1}\right)$	$\frac{1}{1} = 3\ln\left(\frac{e}{e+2}\right) -$	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i	s dependent 2 nd M mark	dM1A1			
						[6]			

Question Number	Scheme			Notes	Marks	
4.	$4x^2 - y^3 - 4xy + 2^y = 0$					
(a) Way 1	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{===================================$	$2\frac{dy}{dx} = 0$			M1 <u>A1</u> <u>M1</u>	= B1
	$8(-2) - 3(4)^2 \frac{dy}{dx} - 4(4) - 4(-2)\frac{dy}{dx} + 2^4 \ln 2\frac{dy}{dx} = 0$ dependent on the first M mark				dM1	
	$-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx}$					
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{-32}{-32}$	$\frac{4}{-5+2\ln 2}$	or ${-5}$	$\frac{4}{+\ln 4}$ or exact equivalent	A1 cso	
	NOTE: You can recover w					[6]
(b)	e.g. $m_{\rm N} = \frac{-40 + 16 \ln 2}{-32}$ or $\frac{40 - 16 \ln 2}{32}$	Applying	$m_{\rm N} = \frac{1}{n}$	$\frac{1}{n_{\rm T}}$ to find a numerical $m_{\rm N}$	M1	
			Can be	implied by later working		
	• $y-4=\left(\frac{40-16\ln 2}{32}\right)(x-2)$			Using a numerical $m_{\rm N} \; (\Box \; m_{\rm T})$, either		
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix}$	40 – 16 ln 2 32	(2)	$y-4 = m_N(x-2)$ and sets $x = 0$ in their normal equation	M1	
	• $4 = \left(\frac{40 - 16\ln 2}{32}\right)(-2) + c$			$4 = (\text{their } m_{\text{N}})(-2) + c$		
	$\begin{cases} \Rightarrow c = 4 + \frac{40 - 16\ln 2}{16}, \text{ so } y = \frac{104 - 16\ln 2}{16} \end{cases}$	$\frac{12}{2} \Rightarrow$				
	$y \text{ (or } c) = \frac{13}{2} - \ln 2$			$\frac{13}{2}$ - ln2 or -ln2 + $\frac{13}{2}$	A1 cso isw	
	Note: Allow exact equivalents in the	e form <i>p</i> -	- ln2 fo	r the final A mark		[3]
						9
(a) Way 2	$\left\{\frac{dx}{dy} \times \right\} \underbrace{8x \frac{dx}{dy} - 3y^2}_{========} \underbrace{-4y \frac{dx}{dy} - 4x + 2^y \ln 2}_{====================================$	z = 0			M1 <u>A1</u> <u>M1</u>	<u>=</u> B1
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2 = -4(-2) + 4(-2) +$	= 0	depen	dent on the first M mark	dM1	
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{4}{-5 + 2 \ln 2}$ or $\frac{4}{-5 + \ln 4}$ or exact equivalent					
	Note: You must be clear that Way 2 is			[6]		
1 (a)	Note: Fourthe first form montes	Question	4 Notes	5		
4. (a)	Note For the first four marks Writing down from no working • $\frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2} \text{ or } \frac{8x - 4y}{3y^2 + 4x - 2^y \ln 2} \text{ scores M1A1M1B1}$ • $\frac{dy}{dx} = \frac{8x - 4y}{-3y^2 - 4x + 2^y \ln 2} \text{ or } \frac{4y - 8x}{3y^2 + 4x - 2^y \ln 2} \text{ scores M1A0M1B1}$					
	Writing $8x dx - 3y^2 dy - 4y dx - 4y$	$4x dy + 2^y$	$\ln 2 dy =$	0 scores M1A1M1B1		

		Question 4 Notes Continued
4. (a)	1st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm \mu 2^y \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). λ , μ are constants which can be 1
	1st A1	Both $4x^2 - y^3 \to 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \to = 0$
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$
		or e.g. $-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx} \rightarrow -48 \frac{dy}{dx} + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx} = 32$ will get 1 st A1 (implied) as the "=0" can be implied by the rearrangement of their equation.
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x \frac{dy}{dx} \text{ or } 4y - 4x \frac{dy}{dx} \text{ or } -4y + 4x \frac{dy}{dx} \text{ or } 4y + 4x \frac{dy}{dx}$
	= B1	$2^y \to 2^y \ln 2 \frac{\mathrm{d}y}{\mathrm{d}x}$ or $2^y \to \mathrm{e}^{y \ln 2} \ln 2 \frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1st A0
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one
		example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been
		substituted into their equation involving $\frac{dy}{dx}$
	Note	A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	isw: You can, however, ignore subsequent working following on from correct solution.
(b)	Note	The 2 nd M1 mark can be implied by later working.
		Eg. Award 1st M1 and 2nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x = -2 \text{ and } y = 4}$
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln\left(\frac{1}{2}\right) + \frac{13}{2\ln 2} (\ln 2)$ which is in the form $p + q \ln 2$
4. (a) Way 2	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm \lambda x \frac{dx}{dy}$
		(Ignore $\left(\frac{dx}{dy}\right)$). λ is a constant which can be 1
	1st <u>A1</u>	Both $4x^2 - y^3 \to 8x \frac{dx}{dy} - 3y^2$ and $= 0 \to = 0$
	2 nd <u>M1</u>	$-4xy \rightarrow -4y\frac{dx}{dy} - 4x \text{ or } 4y\frac{dx}{dy} - 4x \text{ or } -4y\frac{dx}{dy} + 4x \text{ or } 4y\frac{dx}{dy} + 4x$
	== B1	$2^y \rightarrow 2^y \ln 2$
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$

Question Number		Scheme		Notes		
5.	$y = e^{x}$	$x^2 + 2e^{-x}, x \square 0$				
Way 1	${V=}$	$\int_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$	Igi	For $\pi \int (e^x + 2e^{-x})^2$ nore limits and dx. Can be implied.	B1	
	$=\{\pi$	$\int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	Expands $\left(e^{x} + \right)$	$(2e^{-x})^2 \rightarrow \pm \alpha e^{2x} \pm \beta e^{-2x} \pm \delta$ where more π , integral sign, limits and dx . This can be implied by later work.	M1	
				one of either $\pm \alpha e^{2x}$ to give $\pm \frac{\alpha}{2} e^{2x}$ or $\pm \beta e^{-2x}$ to give $\pm \frac{\beta}{2} e^{-2x} \alpha, \beta \square 0$	M1	
	$= \{\pi$	$\left\{ \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_{0}^{\ln 4} \right\}$		dependent on the 2 nd M mark $e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x},$	A1	
			whic	ch can be simplified or un-simplified		
				$4 \rightarrow 4x \text{ or } 4e^0x$	B1 cao	
	$= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right)$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right)$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right)$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right) \right\}$ $= \left\{\pi\right\} \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right)$ $= \left\{\pi\right\} \left(\frac{1}{2} e^0 - 2e^0 + 4(0)\right)$ $= \left(\frac{1}{2} e$				dM1	
	$=\{\pi\}\bigg(\bigg($	$\left(8 - \frac{1}{8} + 4 \ln 4\right) - \left(\frac{1}{2} - 2\right)$				
	($= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi + 85$ or $\frac{75}{8}\pi + \ln 2^{8\pi} \text{ or } \frac{75}{8}\pi + \pi \ln 2$	<u> </u>		A1 isw	
					[7]	
			Question 5 N	otes	7	
5.	Note	π is only required for the 1st B	1 mark and the fina	al A1 mark.		
	Note	Give 1 st B0 for writing πy^2 d	$1x$ followed by 2π	$\left(\left(e^{x} + 2e^{-x} \right)^{2} dx \right)$		
	Note	Give 1 st M1 for $\left(e^x + 2e^{-x}\right)^2 \rightarrow$	$e^{2x} + 4e^{-2x} + 2e^0$	$+ 2e^0 \text{ because } \delta = 2e^0 + 2e^0$		
	Note	A decimal answer of 46.8731	or $\pi(14.9201)$	(without a correct exact answer) is A	.0	
	Note	$\pi \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_0^{\ln 4}$ followe	d by awrt 46.9 (wit	hout a correct exact answer) is final of	dM1A0	
	Note	Allow exact equivalents which	should be in the fo	rm $a\pi + b\pi \ln c$ or $\pi(a + b \ln c)$,		
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	. Do not allow $a =$	$=\frac{150}{16}$ or $9\frac{6}{16}$		
	Note	Give B1M0M1A1B0M1A0 for $\pi \int_{0}^{\ln 4} (e^{x} + 2e^{-x})^{2} dx \to \pi \int_{0}^{\ln $	the common respo	onse		

Number	Scheme			Notes	Marks
5.	$y = e^x + 2e^{-x}, \ x \square 0$				
Way 2	$\left\{V=\right\} \pi \bigsqcup_{0}^{\ln 4} \left(e^{x} + 2e^{-x}\right)^{2} dx$		Ignore limit	For $\pi \int (e^x + 2e^{-x})^2$ s and dx. Can be implied.	B1
		$e^x \square \frac{du}{dx} = e^x = u$ and $x = \ln 4 \square u = 4, x = 0 \square u = e^0 = 1$			
	$V = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} du$	$= \left\{\pi\right\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} \frac{1}{u} du = \left\{\pi\right\} \int_{1}^{4} \left(u^{2} + \frac{4}{u^{2}} + 4\right) \frac{1}{u} du$			
	$\left(e^{x}+2e^{-x}\right)^{2} \rightarrow \pm \alpha u \pm \beta u^{-3} \pm \delta u^{-1}$				
	$= \left\{\pi\right\} \int_{1}^{4} \left(u + \frac{4}{u^3} + \frac{4}{u}\right) \mathrm{d}u$		Ignore π , in	where $u = e^x$, α , β , $\delta \neq 0$. tegral sign, limits and du . to be implied by later work.	<u>M1</u>
		Integrates	Integrates at least one of either $\pm \alpha u$ to give $\pm \frac{\alpha}{2}u^2$		
	Γ ₁ 2	or $\pm \beta u^{-3}$ to give $\pm \frac{\beta}{2} u^{-2} \alpha$, $\beta \square 0$, where $u = e^x$			
	$= \left\{ \pi \right\} \left[\frac{1}{2} u^2 - \frac{2}{u^2} + 4 \ln u \right]^4$		depe	ndent on the 2 nd M mark	
	C- " JI			$u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2}$,	A1
			simplified or u	n-simplified, where $u = e^x$	
			1	$u^{-1} \rightarrow 4 \ln u$, where $u = e^x$	B1 cao
	$= \left\{\pi\right\} \left[\left(\frac{1}{2}(4)^2 - \frac{2}{(4)^2} + 4\ln 4\right) - \left(\frac{1}{2}(1+4)^2 + 4\ln 4\right) \right]$	$(1)^2 - \frac{2}{(1)^2} + 4 \ln 1$	mark. S limi function in	Some evidence of applying ts of 4 and 1 to a changed in <i>u</i> [or ln 4 o.e. and 0 to an function in <i>x</i>] and subtracts the correct way round.	dM1
	$= \left\{ \pi \right\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$				
	$= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi$	()			A1 isw
	or $\frac{75}{8}\pi + \ln 2^{8\pi}$ or $\frac{75}{8}\pi + \pi$	$2 \ln 256$ or $\ln \left(2 \right)$	$e^{8\pi}e^{\frac{75}{8}\pi}$ or $\frac{1}{8}$	τ $(75 + 32 \ln 4)$, etc	A1 15W
					[7]

6.	$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}; \overrightarrow{OA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} \text{ lies on } l_1 \text{Let } \theta_{\text{Acute}} \text{ be the acute angle between } l_1 \text{ and } l_2$	
(a)	$\begin{cases} \{l_1 = l_2 \Rightarrow\} \ 28 - 5\lambda = 3 \ \{\Rightarrow \lambda = 5\} \\ \text{or } 4 - \lambda = 5 + 3\mu \text{ and } 4 + \lambda = 1 - 4\mu \ \{\Rightarrow \mu = -2\} \end{cases}$ $28 - 5\lambda = 3 \text{ or } 4 - \lambda = 5 + 3\mu \text{ and } 4 + \lambda = 1 - 4\mu \text{ or } \lambda = 5 \text{ or } \mu = -2 \text{ (Can be implied)}.$	B1
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \qquad \begin{array}{l} \text{Puts } \ l_1 = l_2 \text{ and solves to find } \lambda \text{ and/or } \mu \\ \text{and substitutes their value for } \lambda \text{ into } l_1 \\ \text{or their value for } \mu \text{ into } l_2 \end{array}$	M1
	So, $X(-1, 3, 9)$ $ (-1, 3, 9) \text{ or } \begin{pmatrix} -1\\3\\9 \end{pmatrix} \text{ or } -\mathbf{i} + 3\mathbf{j} + 9\mathbf{k} \text{ or condone} \begin{array}{c} -1\\3\\9 \end{array} $	A1 cao
(b) Way 1	$\mathbf{d_1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ Realisation that the dot product is required between $\mathbf{d_1}$ and $\mathbf{d_2}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_2}$	[3] M1
	$\cos \theta = \frac{\begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}} \left\{ = \frac{-7}{\sqrt{27} \cdot \sqrt{25}} \right\} $ $\frac{\text{dependent on the }}{\text{1st M mark. Applies dot product formula between } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \text{ or a multiple of } \mathbf{d}_1 \text{ and } \mathbf{d}_2}$	dM1
	$\{\theta = 105.6303588 \ \Box \ \} \ \theta_{Acute} = 74.36964117 = 74.37 \ (2 \text{ dp})$ awrt 74.37 seen in (b) only	A1
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \text{ or } A_{\lambda=2}, X_{\lambda=5} \square AX = 3 \mathbf{d}_1 , \left\{ \mathbf{d}_1 = \sqrt{27} \right\}$	[3]
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9\sqrt{3}$ Full method for finding AX or XA	M1
	$AX = \sqrt{(-3)^2 + (-13)^2 + (3)^2}$ of $3\sqrt{27} = \sqrt{243} = 3\sqrt{3}$ seen in (c) only	A 1 aga
1	Note: You cannot recover work for part (c) in either part (d) or part (e).	A1 cao [2]
(d) Way 1	$\frac{YA}{\text{"9}\sqrt{3}\text{"}} = \tan(\text{"74.36964"}) \qquad \frac{YA}{\text{their } \overrightarrow{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overrightarrow{AX} \right) \tan\theta, \text{ where } \theta \text{ is}$	A1 cao [2]
(d) Way 1	$YA = \tan \theta$ or $VA = \left(\frac{1}{4} \right) \left(\frac{1}{4$	[2]
	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is their acute or obtuse angle between } l_1 \text{ and } l_2$ $YA = 55.71758 = 55.7 \text{ (1 dp)}$ anything that rounds to 55.7	[2] M1
(e)	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is }$ $YA = 55.71758 = 55.7 \text{ (1 dp)}$ $\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B, \ \lambda = 3.5 \text{ or } \lambda = 0.5)\}$	[2] M1
	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is their acute or obtuse angle between } l_1 \text{ and } l_2$ $YA = 55.71758 = 55.7 \text{ (1 dp)}$ anything that rounds to 55.7	[2] M1
(e)	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is }$ $YA = 55.71758 = 55.7 \text{ (1 dp)}$ $\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B, \lambda = 3.5 \text{ or } \lambda = 0.5)\}$ $\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$ Substitutes either $\lambda = \frac{(\text{their } \lambda_X \text{ found in } (a)) + 2}{2}$ $\overrightarrow{OF} \lambda_{\beta} = 3 - \frac{(\text{their } \lambda_X \text{ found in } (a))}{2} \text{ into } l_1$	[2] M1 A1 [2]
(e)	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is }$ $YA = 55.71758 = 55.7 \text{ (1 dp)}$ $\frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right) \tan\theta, \text{ where } \theta \text{ is }$ $A = 55.71758 = 55.7 \text{ (1 dp)}$ $A = 55.71758 = 55.7 \text{ (1 dp)}$ $A = 3.5 \text{ or } \lambda = 0.5 \text{ (1 deir } \lambda_X \text{ found in } (a)) + 2$ $A = 3.5 \text{ or } \lambda = 3.5 \text{ or } \lambda = 0.5 \text{ (1 deir } \lambda_X \text{ found in } (a)) + 2$ $A = 3.5 \text{ or } \lambda = 3.5 \text{ or }$	M1

Question Number	Scheme	Notes	Marks
6. (e)	$\begin{cases} AX = 2AB \Rightarrow AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{A} \end{cases}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX} $	
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = $\pm \left[\text{(their } \overrightarrow{OX}) - \overrightarrow{OA} \right]$	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$ \begin{array}{c c} 6 & 6 \\ 6 & 3 \end{array}, \begin{array}{c c} 7 & 25.5 \\ 4.5 & 6 \end{array} $	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3	$\overline{AB} = \begin{pmatrix} 4 - \lambda \\ 28 - 5\lambda \\ 4 + \lambda \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 - \lambda \\ 10 - 5\lambda \\ -2 + \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda \\ 10 - 5\lambda \\ -2 + \lambda \end{pmatrix}$	$ \begin{array}{c} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{array} $ $ \overrightarrow{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} $ $ AX^2 = 243 \square $ $ AB^2 = 27(2-\lambda)^2 $	
	$AX = 2AB \square AX^2 = 4AB^2 \square 243 = 4(27)(2)$	$(2-\lambda)^2 \Box (2-\lambda)^2 = \frac{9}{4} \text{ or } 27\lambda^2 - 108\lambda + \frac{189}{4} = 0$	
	or $108\lambda^2 - 432\lambda + 189 = 0$ or $4\lambda^2 - 16\lambda +$		
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Full method of solving for λ the equation $AX^2 = 4AB^2$ using (their \overrightarrow{AX}) and \overrightarrow{AB} and substitutes at least one of their values for λ into l_1	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$\begin{pmatrix} 2 & 1 & 3 & 4 & 5 \\ 4 & 1 & 1 & 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
		$\lambda = 3.5$ or $\lambda = 0.5$ can be found from solving either $\pm 2(10 - 5\lambda)$ or $z : -3 = \pm 2(-2 + \lambda)$	[3]
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} + 0.5 \begin{pmatrix} 3\\15\\-3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{XA} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{XA} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX})	M1;
	$\begin{array}{c c} \hline \\ \hline $	At least one position vector is correct (Also allow coordinates)	A1
	$\overline{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;
	$\frac{2}{2R}$ $\begin{pmatrix} 2\\18 \end{pmatrix}$ $\begin{pmatrix} -3\\15 \end{pmatrix}$ $\begin{pmatrix} 3.5\\25.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$ \overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix} $	Both position vectors are correct (Also allow coordinates)	A1
			[3]

Question Number		Scheme	Notes		Marks
6. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right = \right.$	$= 9\sqrt{3}, d_1 = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overrightarrow{AX}$	$= 3\mathbf{d}_1$; So, $\overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} = \overrightarrow{OA}$	$\overrightarrow{OA} \pm \frac{1}{2} (3\mathbf{d_1})$	
		$\begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	$\overline{OA} + 0.5(K\mathbf{d_1})$ or \overline{OA}	Applies either $A = 0.5(K\mathbf{d}_1),$ $= \frac{\text{their } AX }{3\sqrt{3}}$	M1;
	$\overrightarrow{OB} = $	$ \begin{vmatrix} 2 \\ 18 \\ 6 \end{vmatrix} - 0.5 \begin{vmatrix} 3 \begin{vmatrix} -1 \\ -5 \\ 1 \end{vmatrix} \end{vmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{vmatrix} $	Both position vector	v coordinates) ors are correct	A1 A1
			(Also allow	v coordinates)	[3]
		Ques	tion 6 Notes		[2]
6. (a)	Note	M1 can be implied by at least two correct		om their λ or fr	com their μ
(b)	Note	Evaluating the dot product (i.e. $(-1)(3)$ for the M1, dM1 marks.	-(-5)(0) + (1)(-4)) is not require	ired	
	Note	For M1 dM1: Allow one slip in writing	down their direction vectors, o	\mathbf{l}_1 and \mathbf{d}_2	
	Note	Note Allow M1 dM1 for $ \left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} . \sqrt{(3)^2 + (0)^2 + (-4)^2} \right) \cos \theta = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \left\langle \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \right. $			
	Note	$\theta = 1.297995^{c}$, (without evidence of a	vrt 74.37) is A0		
6. (b)	Alterna	ntive Method: Vector Cross Product			
Way 2		pply this scheme if it is clear that a vecto) D 1' '		
	$\mathbf{d}_1 \times \mathbf{d}_2 =$	$= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} = \end{cases}$	$20\mathbf{i} - \mathbf{j} + 15\mathbf{k}$ cross produbetw	that the vector act is required are \mathbf{d}_1 and \mathbf{d}_2 of \mathbf{d}_1 and \mathbf{d}_2	M1
		$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$	formula betw or a multiple	vector product \mathbf{d}_1 and \mathbf{d}_2 of \mathbf{d}_1 and \mathbf{d}_2	dM1
	$\sin \theta =$	$= \frac{\sqrt{626}}{\sqrt{27}.\sqrt{25}} \Box \theta = 74.36964117 = 74.3^{\circ}$	(2 dp) awrt 74.37 se	een in (b) only	A1
6 (0)	N/I 1	E. 1 d. 1:00		.1 1 ~	[3]
6. (c)	M1	Finds the difference between their OX and OP and OP and OP and OP are OP and OP are OP and OP are OP and OP are OP are OP and OP are OP are OP are OP and OP are OP are OP are OP and OP are OP are OP and OP are OP are OP are OP and OP are OP are OP are OP are OP and OP are OP and OP are OP		tne result to fin	a AX or XA
		OR applies $\left \left(\text{their } \lambda_X \text{ found in } (a) \right) - 2 \right $.			
	Note	For M1: Allow one slip in writing down t	neir OX and OA		
	Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$				
(e)	Note	Imply M1 for no working leading to any to	vo components of one of the \overline{O}	\vec{B} which are co	rrect.

Question Number	Scheme			Notes	Ma	rks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$			$ \ln(90 - \theta) $ or $AY = \frac{\text{their } \overrightarrow{AX} }{\tan(90 - \theta)}$, or obtuse angle between l_1 and l_2	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)			anything that rounds to 55.7	A1	[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964")}$		acute o	their $ \overrightarrow{AX} $ o.e., where θ is the $\sin(90-\theta)$ or obtuse angle between l_1 and l_2	M1	[2]
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$	= 55.7 (1 dp)		anything that rounds to 55.7	A1	
						[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	=				
	$\overrightarrow{YA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} - \begin{pmatrix} 5+3\mu\\3\\1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu\\15\\5+4\mu \end{pmatrix}$					
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0		(Allow a sign slip in copying \mathbf{d}_1) blies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	\Box 3+3 μ -75+5+4 μ =0 \Box $\mu = \frac{67}{7}$	1		• $(K \mathbf{d}_1) = 0$ or $\overrightarrow{AY} \bullet (K \mathbf{d}_1) = 0$ and applies Pythagoras to find a		
	$YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\left(\frac{67}{7}\right)\right)^{2}$	$\left(\frac{67}{7}\right)^2$	numeric	cal expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$					
	= 55.71758 = 55.7 (1 dp)	222	303	anything that rounds to 55.7	A1	[2]
	Note: $\overline{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overline{AY} = -$	$\frac{222}{7}\mathbf{i} + 15\mathbf{j} + \frac{2}{7}$	$\frac{303}{7}$ k			[**]

Question Number	Scheme		Notes	Marks
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k\sqrt{(h-9)}, 9 < h \le 200; h$	$h = 130, \frac{\mathrm{d}h}{\mathrm{d}t} = -1.1$		
(a)	$-1.1 = k \sqrt{(130-9)} \square k =$		60 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ equation and rearranges to give $k =$	M1
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1
				[2]
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	correctly. dh and dt should not be in s, although this mark can be implied by ater working. Ignore the integral signs.	B1
	$\int (h-9)^{-\frac{1}{2}} dh = \int k dt$			
	<u>1</u>	Integrates $\frac{1}{\sqrt{(}}$	$\frac{\pm \lambda}{h-9}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \square 0$	M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left(+c\right)$	(2)	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c,$	A1
		or equivalent	t, which can be un-simplified or simplified. Some evidence of applying both	
	$\{t=0, h=200 \square \} 2\sqrt{(200-9)} =$	k(0) + c	t = 0 and $h = 200$ to changed equation	M1 ¬
	,		ing a constant of integration, e.g. c or A	
	$\Box c = 2\sqrt{191} \Box 2(h-9)^{\frac{1}{2}} = -0.1t$	$+ 2\sqrt{191}$	dependent on the previous M mark	
	$\{h = 50 \Longrightarrow\} 2\sqrt{(50-9)} = -0.1t + 2$	$2\sqrt{191}$	Applies $h = 50$ and their value of c to	13.61
	$t = \dots$	2 171	their changed equation and rearranges to find the value of $t =$	dM1 ✓
	$t = 20\sqrt{191} - 20\sqrt{41}$		$t = 20\sqrt{191} - 20\sqrt{41}$ isw	A 1
	or $t = 148.3430145 = 148$ (minut	res) (nearest minute)	or awrt 148	A1 cso
				[6]
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit	les correctly. dh and dt should not be ions, although this mark can be implied Integral signs and limits not necessary.	B1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$			
	$\left[\frac{1}{(1-x)^{\frac{1}{2}}} \right]^{50}$	Integrates $$	$\frac{\pm \lambda}{h-9}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \square 0$	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-1)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}$	$\frac{\pm \lambda}{h-9} \text{ to give } \pm \mu \sqrt{(h-9)}; \ \lambda, \mu \square 0$ $\frac{(-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = \text{ (their } k)t, \text{ with/without limits,}$	A1
			t, which can be un-simplified or simplified.	
	$2\sqrt{41} - 2\sqrt{191} = kt \text{ or } kT$		apts to apply limits of $h = 200$, $h = 50$ mplied) $t = 0$ to their changed equation	M1 ¬
		and (can be in	<u> </u>	1111
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	The	dependent on the previous M mark en rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$	·	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148	
	or $t = 148.3430145 = 148$ (minut	es) (nearest minute)	or 2 hours and awrt 28 minutes	A1 cso
		·		[6]
				8

		Question 7 Notes
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \ (+c) \text{ with/without } + c \text{ is B1M1A1}$
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \frac{\mathrm{d}h}{\sqrt{(h-9)}} = -k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \frac{\mathrm{d}h}{\sqrt{(h-9)}} = -0.1\mathrm{d}t$
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in
		part (b).

8.	$x = 3\theta \sin \theta, \ y = \sec^3 \theta, \ 0 \le \theta$	$<\frac{\pi}{2}$				
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \csc^3 \theta$	$\cos^3 \theta = \frac{1}{8} \Rightarrow$	$\cos\theta = \frac{1}{2} = \frac{1}{2}$	$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3\theta \sin \theta$	M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}\pi}{2} \text{ or } \frac{3\pi}{2\sqrt{3}}$	A1
	Note: Obtaining to	wo value for	k without ac	ccepting the	correct value is final A0	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}\theta} \left\{ \mathrm{d}\theta \right\} \right\} = \int (\sec^3 \theta) (3 + \cos^3 \theta)$	$\sin\theta + 3\theta\cos\theta$	θ) $\left\{ \mathrm{d}\theta \right\}$		Applies $(\pm K \sec^3 \theta)$ (their $\frac{dx}{d\theta}$) Ignore integral sign and $d\theta$; $K \square 0$	M1
	$= 3 \theta \sec^2 \theta + \tan \theta \sec^2 \theta d\theta$				result no errors in their working, e.g. bracketing or manipulation errors. al sign and $d\theta$ in their final answer.	A1 *
	$x = 0$ and $x = k \implies \underline{\alpha} = 0$ and	and $\beta = \frac{\pi}{3}$	$\alpha = 0$	and $\beta = \frac{\pi}{3}$	or evidence of $0 \rightarrow 0$ and $k \rightarrow \frac{\pi}{3}$	B1
	Note: The w	ork for the fi	nal B1 mar	k must be se	en in part (b) only.	[4]
(c)	$\left\{ \Theta \sec^2 \theta d\theta \right\} = \theta \tan \theta - \Box$	$ an heta \{ ext{d} heta \}$	v	where $g(\theta)$ is $g(\theta) = their$	$\rightarrow A\theta g(\theta) - B \int g(\theta), A > 0, B > 0,$ is a trigonometric function in θ and if $\sec^2 \theta d\theta$. [Note: $g(\theta) \Box \sec^2 \theta$]	M1
Way 1		1 ()	Eithe		ependent on the previous M mark $\rightarrow A\theta \tan \theta - B \int \tan \theta$, $A > 0$, $B > 0$ or $\theta \sec^2 \theta \rightarrow \theta \tan \theta - \int \tan \theta$	dM1
	$= \theta \tan \theta - \ln(\sec \theta)$		θ sec	$e^2 \theta \rightarrow \theta \tan \theta$	$\theta - \ln(\sec \theta)$ or $\theta \tan \theta + \ln(\cos \theta)$ or	
	$\mathbf{or} = \theta \tan \theta$	$+\ln(\cos\theta)$	$\lambda\theta\sec^2\theta$	$\rightarrow \lambda \theta \tan \theta$	$-\lambda \ln(\sec \theta)$ or $\lambda \theta \tan \theta + \lambda \ln(\cos \theta)$	A1
	Note: Condone	$\theta \sec^2 \theta \rightarrow$	$\theta \tan \theta - \ln(1)$	$\sec x$) or θ t	$\tan \theta + \ln(\cos x)$ for A1	
	$\left\{ \boxed{\tan\theta\sec^2\theta d\theta} \right\}$		$\tan \theta \sec^2 \theta$	$^{2}\theta$ or $\lambda \tan \theta$	$\theta \sec^2 \theta \to \pm C \tan^2 \theta \text{ or } \pm C \sec^2 \theta$ or $\pm C u^{-2}$, where $u = \cos \theta$	M1
	$= \frac{1}{2} \tan^2 \theta \text{ or } \frac{1}{2} \sec^2 \theta$	$\tan \theta$ se	$c^2 \theta \rightarrow \frac{1}{2} tan$	θ or $\frac{1}{-\sec\theta}$	$e^2\theta$ or $\frac{1}{2\cos^2\theta}$ or $\tan^2\theta - \frac{1}{2}\sec^2\theta$	
	1		_	_	2005 0 =	
	or $\frac{1}{2u^2}$ where $u = \cos \theta$ or $\frac{1}{2}u^2$ where $u = \tan \theta$		or $0.5i$	u^{-2} , where u $\tan \theta \sec^2 \theta$	$u = \cos\theta \text{ or } 0.5u^2, \text{ where } u = \tan\theta$ $\Rightarrow \frac{\lambda}{2} \tan^2\theta \text{ or } \frac{\lambda}{2} \sec^2\theta \text{ or } \frac{\lambda}{2\cos^2\theta}$ $= \cos\theta \text{ or } 0.5\lambda u^2, \text{ where } u = \tan\theta$	A1
	24		or $0.5i$ or λ	u^{-2} , where u $\tan \theta \sec^2 \theta$ - $\frac{1}{2}$, where $u = \frac{1}{2}$	$u = \cos \theta$ or $0.5u^2$, where $u = \tan \theta$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta$ or $\frac{\lambda}{2} \sec^2 \theta$ or $\frac{\lambda}{2 \cos^2 \theta}$ $= \cos \theta$ or $0.5\lambda u^2$, where $u = \tan \theta$	A1
	or $\frac{1}{2}u^2$ where $u = \tan \theta$ $\left\{ \operatorname{Area}(R) \right\} = \left[3\theta \tan \theta - 3\ln(\sec \theta) \right]$ $= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 - \frac{\pi}{3} \right)$	$\frac{1}{1} + \frac{3}{2} \tan^2 \theta \Big]_0^{\frac{\pi}{3}} + \frac{3}{2} (3) - (0)$	or $0.5u$ or λ or $0.5\lambda u^{-}$ or $\left[3\theta \tan \theta\right]$	u^{-2} , where u tan $\theta \sec^2 \theta$ - u^{-2} , where $u = -3\ln(\sec \theta) + \sqrt{3} - 3\ln 2 + \frac{3}{2}$	$u = \cos\theta \text{ or } 0.5u^2, \text{ where } u = \tan\theta$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta \text{ or } \frac{\lambda}{2} \sec^2 \theta \text{ or } \frac{\lambda}{2\cos^2 \theta}$ $= \cos\theta \text{ or } 0.5\lambda u^2, \text{ where } u = \tan\theta$ $\frac{3}{2} \sec^2 \theta \Big]_0^{\frac{\pi}{3}}$ $(4) \left(-\frac{3}{2} \right)$	A1
	or $\frac{1}{2}u^2$ where $u = \tan \theta$ $\left\{ \operatorname{Area}(R) \right\} = \left[3\theta \tan \theta - 3\ln(\sec \theta) \right]$ $= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 - \frac{\pi}{3} \right)$	$\frac{1}{1} + \frac{3}{2} \tan^2 \theta \Big]_0^{\frac{\pi}{3}} + \frac{3}{2} (3) - (0)$	or $0.5u$ or λ or $0.5\lambda u^{-}$ or $\left[3\theta \tan \theta\right]$	u^{-2} , where u tan $\theta \sec^2 \theta$ - u^{-2} , where $u = -3\ln(\sec \theta) + \sqrt{3} - 3\ln 2 + \frac{3}{2}$	$u = \cos \theta$ or $0.5u^2$, where $u = \tan \theta$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta$ or $\frac{\lambda}{2} \sec^2 \theta$ or $\frac{\lambda}{2 \cos^2 \theta}$ $= \cos \theta$ or $0.5\lambda u^2$, where $u = \tan \theta$ $\frac{3}{2} \sec^2 \theta \Big]_0^{\frac{\pi}{3}}$	A1 A1 o.e.

Question Number		Scheme		Notes	Marks	
8. (c)	Way 2 fo	or the first 5 marks: Applying integration	gration b	by parts on $(\theta + \tan \theta) \sec^2 \theta d\theta$		
Way 2	$\theta \sec^2 \theta$	$\theta + \tan\theta \sec^2\theta$) d $\theta = \left(\theta + \tan\theta\right)$ so	$\tan\theta \sec^2\theta d\theta = (\theta + \tan\theta)\sec^2\theta d\theta, \begin{cases} u = \theta + \tan\theta \Rightarrow \frac{du}{d\theta} = 1 + \sec^2\theta \\ \frac{dv}{d\theta} = \sec^2\theta \Rightarrow v = \tan\theta = g(\theta) \end{cases}$			
	$h(\theta)$ and	$g(\theta)$ are trigonometric functions in	(θ) are trigonometric functions in θ and $g(\theta) = \text{their } [\sec^2 \theta d\theta]$. [Note: $g(\theta) = \sec^2 \theta$]			
					M1	
	$=(\theta+ta)$	$\tan \theta$) $\tan \theta - \left[1 + \sec^2 \theta\right] \tan \theta \left\{d\theta\right\}$		dependent on the previous M mark Either $\lambda \Big[(\theta + \tan \theta) \sec^2 \theta \Big] \rightarrow$ $+ \tan \theta \Big] \tan \theta - B \Big[(1 + h(\theta)) \tan \theta \Big], A \Box 0, B > 0$	dM1	
				or $(\theta + \tan \theta) \tan \theta - (1 + h(\theta)) \tan \theta$		
	$= (\theta + ta)$	$\tan \theta$) $\tan \theta - (\tan \theta + \tan \theta \sec^2 \theta) d$	θ			
	$= (\theta + ta)$	$\tan \theta $) $\tan \theta - \ln(\sec \theta) - \frac{\tan \theta \sec^2 \theta}{\tan \theta}$	$\left\{ \mathrm{d} heta ight\}$	$(\theta + \tan \theta) \tan \theta - \ln(\sec \theta) \text{ o.e.}$ or $\lambda \Big[(\theta + \tan \theta) \tan \theta - \ln(\sec \theta) \Big] \text{ o.e.}$	A1	
	(0)	0. 0.1 (0.1. 2.0		$\tan\theta \sec^2\theta \to \pm C\tan^2\theta \text{ or } \pm C\sec^2\theta$	M1	
		$(\ln \theta) \tan \theta - \ln(\sec \theta) - \frac{1}{2} \tan^2 \theta$ - $\tan \theta) \tan \theta - \ln(\sec \theta) - \frac{1}{2} \sec^2 \theta$ et	c.	$(\theta + \tan \theta) \tan \theta - \frac{1}{2} \tan^2 \theta$ or $(\theta + \tan \theta) \tan \theta - \frac{1}{2} \sec^2 \theta$	A1	
	Note	Allow the first two marks in part (c) for θ	$\tan \theta - \cot \theta$ embedded in their working		
	Note		, ,	$\theta \tan \theta - \ln(\sec \theta)$ embedded in their working		
	Note	Allow 3 rd M1 2 nd A1 marks for eit	her tan ²	$\theta - \frac{1}{2} \tan^2 \theta$ or $\tan^2 \theta - \frac{1}{2} \sec^2 \theta$		
		embedded in their working	Questio	on 8 Notes		
8. (a)	Note		Allow M1 for an answer of $k = \text{awrt } 2.72$ without reference to $\frac{\sqrt{3} \pi}{2}$ or $\frac{3\pi}{2\sqrt{3}}$			
	Note	Allow M1 for an answer of $k = 3$	(arccos(-	$(\frac{1}{2})$)sin(arccos($\frac{1}{2}$)) without reference to $\frac{\sqrt{3}\pi}{2}$ or	$\frac{3\pi}{2\sqrt{3}}$	
	Note	E.g. allow M1 for $\theta = 60$ Y, leading	g to $k =$	$= 3(60)\sin(60)$ or $k = 90\sqrt{3}$		

8. (b)	Note	To gain A1, $d\theta$ does not need to appear until the	ey obtain $3 (\theta \sec^2 \theta + \tan \theta \sec^2 \theta) d\theta$			
	Note	For M1, their $\frac{dx}{d\theta}$, where their $\frac{dx}{d\theta} \square 3\theta \sin \theta$, ne	eds to be a trigonometric function in θ			
	Note	Writing $(\sec^3 \theta)(3\sin\theta + 3\theta\cos\theta) = 3(\theta\sec\theta)$	$(2^2 \theta + \tan \theta \sec^2 \theta) d\theta$ is sufficient for B1M1	A1		
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing is sufficient for B1M1A1	Iting $\sqrt{\frac{dx}{d\theta}} d\theta = 3\sqrt{\theta \sec^2 \theta + \tan \theta \sec^2 \theta}$	$\mathrm{d} heta$		
	Note	The final A mark would be lost for $\frac{1}{\cos^3 \theta} 3\sin^3 \theta$ [lack of brackets in this particular case].	$\theta + 3\theta \cos \theta = 3 \left[\theta \sec^2 \theta + \tan \theta \sec^2 \theta \right] d\theta$	θ		
	Note	Give 2 nd B0 for $\alpha = 0$ and $\beta = 60$ Y, without reference to $\beta = \frac{\pi}{3}$				
(c)	Note	A decimal answer of 7.861956551 (without a c	,			
	Note	First three marks are for integrating $\theta \sec^2 \theta$ wit	h respect to θ			
	Note	Fourth and fifth marks are for integrating $tan \theta s$	$ec^2 \theta$ with respect to θ			
	Note	Candidates are not penalised for writing ln sec 6	as either $\ln(\sec\theta)$ or $\ln\sec\theta$			
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\sec \theta)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0			
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\cos \theta)$ WITH NO INTEL				
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\sec \theta)$ WITH NO INTER	RMEDIATE WORKING is M1M1A1			
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\cos \theta)$ WITH NO INTEL				
	Note	Writing a correct $uv - v \frac{du}{dx}$ with $u = \theta$, $\frac{dv}{d\theta} = 0$ one error in the direct application of this formula	$\tan \theta$, $\frac{du}{d\theta} = 1$ and $v = \text{their } g(\theta)$ and making	ng		
8. (c)	Alternativ	we method for finding $\tan \theta \sec^2 \theta d\theta$,			
		$\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = \sec^2 \theta$ $c^2 \theta \Rightarrow v = \tan \theta$				
	tar	$\theta \sec^2 \theta d\theta = \tan^2 \theta - \tan \theta \sec^2 \theta d\theta$				
	□ 2 □ tan	$\theta \sec^2 \theta d\theta = \tan^2 \theta$				
			$\tan \theta \sec^2 \theta \text{ or } \to \pm C \tan^2 \theta$	M1		
	$_{t}$ tan θ sec	$e^2 \theta d\theta = \frac{1}{2} \tan^2 \theta$	$\tan\theta \sec^2\theta \to \frac{1}{2}\tan^2\theta$	A1		
	or $\begin{cases} u = \frac{dv}{d\theta} \end{cases}$	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = \sec\theta \tan\theta$ $= \sec\theta \tan\theta \Rightarrow v = \sec\theta$				
	□ t an <i>6</i>	$\theta \sec^2 \theta d\theta = \sec^2 \theta - \sec^2 \theta \tan \theta d\theta$				
	□ 2 _t an	$\theta \sec^2 \theta d\theta = \sec^2 \theta$				
		2 0 1 2 0	$\tan\theta \sec^2\theta \text{ or } \to \pm C \sec^2\theta$	M1		
	$_{t}$ tan θ sec	$e^2 \theta d\theta = \frac{1}{2} \sec^2 \theta$	$\tan\theta\sec^2\theta\to\frac{1}{2}\sec^2\theta$	A1		