Mark Scheme (Results)

Summer 2007

GCE

GCE Mathematics (6666/01)

edexcel

June 2007
 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1. (a)	** represents a constant		B1
	$f(x)=(3+2 x)^{-3}=\underline{(3)^{-3}}\left(1+\frac{2 x}{3}\right)^{-3}=\frac{1}{\underline{27}}\left(1+\frac{2 x}{3}\right)^{-3}$ $=\frac{1}{27}\left\{1+(-3)\left(^{* *} x\right) ;+\frac{(-3)(-4)}{2!}\left({ }^{* *} x\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left({ }^{* *} x\right)^{3}+\ldots\right\}$ with ** $\neq 1$ $\begin{aligned} & =\frac{1}{27}\left\{1+(-3)\left(\frac{2 x}{3}\right)+\frac{(-3)(-4)}{2!}\left(\frac{2 x}{3}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{2 x}{3}\right)^{3}+\ldots\right\} \\ & =\frac{1}{27}\left\{1-2 x+\frac{8 x^{2}}{3}-\frac{80}{27} x^{3}+\ldots\right\} \\ & =\frac{1}{27}-\frac{2 x}{27} ;+\frac{8 x^{2}}{81}-\frac{80 x^{3}}{729}+\ldots \end{aligned}$	Takes 3 outside the bracket to give any of $(3)^{-3} \text { or } \frac{1}{27} \text {. }$ See note below. Expands $\left(1+{ }^{* *} x\right)^{-3}$ to give a simplified or an un-simplified $1+(-3)(* * x) ;$ A correct simplified or an un-simplified \square expansion with candidate's followed thro' (**x) Anything that cancels to $\frac{1}{27}-\frac{2 \mathrm{x}}{27}$; Simplified $\frac{8 x^{2}}{81}-\frac{800^{3}}{729}$	
			M1;
			A1 $\sqrt{ }$
			A1; A1
			5 marks

Note: You would award: B1M1A0 for
$=\frac{1}{27}\left\{1+(-3)\left(\frac{2 x}{3}\right)+\frac{(-3)(-4)}{2!}(2 x)^{2}+\frac{(-3)(-4)(-5)}{3!}(2 x)^{3}+\ldots\right\}$
Special Case: If you see the constant $\frac{1}{27}$ in a candidate's final binomial expression, then you can award B1
because ** is not consistent.

edexcel

Question Number	Scheme		Marks
Aliter 1. Way 2	$f(x)=(3+2 x)^{-3}$		
		$\left.\frac{1}{27} \text { or }(3)^{-3} \text { (See note } \downarrow\right)$	B1
	$=\left\{\begin{array}{c} (3)^{-3}+(-3)(3)^{-4}\left(^{* *} x\right) ;+\frac{(-3)(-4)}{2!}(3)^{-5}\left({ }^{* *} x\right)^{2} \\ \quad+\frac{(-3)(-4)(-5)}{3!}(3)^{-6}\left({ }^{* *} x\right)^{3}+\ldots \end{array}\right.$	give an un-simplified or simplified $(3)^{-3}+(-3)(3)^{-4}\left({ }^{* *} x\right) ;$ A correct un-simplified	M1
	with ** $=1$	\qquad expansion with candidate's followed thro' (**x)	A1 $\sqrt{ }$
	$=\left\{\begin{array}{c} (3)^{-3}+(-3)(3)^{-4}(2 x) ;+\frac{(-3)(-4)}{2!}(3)^{-5}(2 x)^{2} \\ +\frac{(-3)(-4)(-5)}{3!}(3)^{-6}(2 x)^{3}+\ldots \end{array}\right\}$ $=\left\{\begin{array}{c} \frac{1}{27}+(-3)\left(\frac{1}{81}\right)(2 x) ;+(6)\left(\frac{1}{243}\right)\left(4 x^{2}\right) \\ +(-10)\left(\frac{1}{729}\right)\left(8 x^{3}\right)+\ldots \end{array}\right\}$		
	$=\frac{1}{27}-\frac{2 x}{27} ;+\frac{8 x^{2}}{81}-\frac{80 x^{3}}{729}+\ldots$	Anything that cancels to $\frac{1}{27}-\frac{2 x}{27}$; Simplified $\frac{8 x^{2}}{81}-\frac{80 x^{3}}{729}$	A1; A1
			[5]
			5 marks

Attempts using Maclaurin expansions need to be escalated up to your team leader.
If you feel the mark scheme does not apply fairly to a candidate please escalate the response up to your team leader.

Special Case: If you see the constant $\frac{1}{27}$ in a candidate's final binomial expression, then you can award B1

edexcel

If you see this integration

applied anywhere in a candidate's working then you can award M1, A1

There are other acceptable answers for A1, eg: $\frac{1}{2 \ln 8}$ or $\frac{1}{\frac{\ln 64}{c}}$
NB: Use your calculator to check eg. 0.240449...

edexcel

Question Number	Scheme		Marks
3. (a)	$\left\{\begin{array}{lll}u=x & \Rightarrow & \frac{d u}{d x}=1 \\ \frac{d v}{d x}=\cos 2 x & \Rightarrow & v=\frac{1}{2} \sin 2 x\end{array}\right\}$		
	$\text { Int }=\int x \cos 2 x d x=\frac{1}{2} x \sin 2 x-\int \frac{1}{2} \sin 2 x .1 \mathrm{~d} x$	(see note below) Use of 'integration by parts' formula in the correct direction.	M1
	$=\frac{1}{2} x \sin 2 x-\frac{1}{2}\left(-\frac{1}{2} \cos 2 x\right)+c$	Correct expression. $\begin{aligned} & \sin 2 x \rightarrow-\frac{1}{2} \cos 2 x \\ & \text { or } \sin k x \rightarrow-\frac{1}{k} \cos k x \\ & \text { with } k \neq 1, k>0 \end{aligned}$	A1 dM1
	$=\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c$	Correct expression with $+c$	A1 [4]
(b)	$\begin{aligned} \int x \cos ^{2} x \mathrm{~d} x & =\int x\left(\frac{\cos 2 x+1}{2}\right) \mathrm{d} x \\ & =\frac{1}{2} \int x \cos 2 x \mathrm{~d} x+\frac{1}{2} \int x \mathrm{~d} x \\ & =\frac{1}{2}\left(\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x\right) ;+\frac{1}{2} \int x \mathrm{~d} x \\ & =\frac{1}{4} x \sin 2 x+\frac{1}{8} \cos 2 x+\frac{1}{4} x^{2}(+c) \end{aligned}$	Substitutes correctly for $\cos ^{2} x$ in the given integral	M1
		$\begin{aligned} & \frac{1}{2} \text { (their answer to (a)); } \\ & \text { or underlined expression } \end{aligned}$	A1; $\sqrt{ }$
		Completely correct expression with/without $+c$	A1
			[3]
			7 marks

Notes:

(b)	Int $=\int x \cos 2 x \mathrm{~d} x=\frac{1}{2} x \sin 2 x \pm \int \frac{1}{2} \sin 2 x .1 \mathrm{~d} x$	This is acceptable for M1	M1
	$\begin{gathered} \left\{\begin{array}{lll} u=x & \Rightarrow & \frac{d u}{d x}=1 \\ \frac{d v}{d x}=\cos 2 x & \Rightarrow & v=\lambda \sin 2 x \end{array}\right\} \\ \text { Int }=\int x \cos 2 x \mathrm{~d} x=\lambda x \sin 2 x \pm \int \lambda \sin 2 x \cdot 1 \mathrm{~d} x \end{gathered} \begin{array}{r} \text { This is also } \\ \text { acceptable for M1 } \end{array}$		
			M1

Question Number	Scheme		Marks
Aliter 3. (b) Way 2	$\int x \cos ^{2} x \mathrm{~d} x=\int x\left(\frac{\cos 2 x+1}{2}\right) \mathrm{d} x$	Substitutes correctly for $\cos ^{2} x$ in the given integral ..	M1
	$\left\{\begin{array}{lll} u=x & \Rightarrow & \frac{d u}{d x}=1 \\ \frac{d v}{d x}=\frac{1}{2} \cos 2 x+\frac{1}{2} & \Rightarrow & v=\frac{1}{4} \sin 2 x+\frac{1}{2} x \end{array}\right\}$	$u=x \text { and } \frac{\mathrm{dv}}{\mathrm{~d} \chi}=\frac{1}{2} \cos 2 x+\frac{1}{2} . \begin{aligned} & \text { or } \end{aligned}$	
	$=\frac{1}{4} x \sin 2 x+\frac{1}{2} x^{2}-\int\left(\frac{1}{4} \sin 2 x+\frac{1}{2} x\right) d x$		
	$=\frac{1}{4} x \sin 2 x+\frac{1}{2} x^{2}+\frac{1}{8} \cos 2 x-\frac{1}{4} x^{2}+c$	$\begin{aligned} & \frac{1}{2} \text { (their answer to (a)); } \\ & \text { or underlined expression } \end{aligned}$	A1 $\sqrt{ }$
	$=\frac{1}{4} x \sin 2 x+\frac{1}{8} \cos 2 x+\frac{1}{4} x^{2}(+c)$	Completely correct expression with/without $+c$	A1
Aliter (b) Way 3	$\begin{aligned} & \int x \cos 2 x \mathrm{~d} x=\int x\left(2 \cos ^{2} x-1\right) \mathrm{d} x \\ & \Rightarrow 2 \int x \cos ^{2} x \mathrm{~d} x-\int x \mathrm{~d} x=\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c \\ & \Rightarrow \int x \cos ^{2} x \mathrm{~d} x=\frac{1}{2}\left(\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x\right) ;+\frac{1}{2} \int x \mathrm{~d} x \end{aligned}$	Substitutes correctly $\begin{array}{r} \text { for } \cos 2 x \\ \text { in } \int x \cos 2 x d x \end{array}$	M1
		$\begin{aligned} & \frac{1}{2} \text { (their answer to (a)); } \\ & \text { or underlined expression } \end{aligned}$	A1; $\sqrt{ }$
	$=\frac{1}{4} x \sin 2 x+\frac{1}{8} \cos 2 x+\frac{1}{4} x^{2}(+c)$	Completely correct expression with/without +c	A1
			[3]
			7 marks

edexcel

$25^{\text {th }}$ June 2007
Version 8: THE FINAL VERSION

edexcel

edexcel

Question Number	Scheme		Marks
5. (a) Way 3	$\left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)=\left(\begin{array}{l} 1 \\ 3 \\ 6 \end{array}\right)+\mu\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)$		M1
	$\begin{array}{llrl} & \mathbf{i}: & 1+\lambda & =1+2 \mu \tag{1}\\ \text { Any two of } & \mathbf{j}: & \lambda & =3+\mu \\ & \mathbf{k}: & -1=6-\mu \end{array}$	Writes down any two of these equations	
	(1) \& (2) yields $\mu=3$ (3) yields $\mu=7$	either one of the μ 's correct both of the μ 's correct	$\begin{array}{\|l\|} \text { A1 } \tag{3}\\ \text { A1 } \end{array}$
	Either: These equations are then inconsistent Or: $\quad 3 \neq 7$ Or: Lines I_{1} and I_{2} do not intersect	Complete method giving rise to any one of these three explanations.	B1 $\sqrt{ }$
	Or: Lines I_{1} and I_{2} do not intersect		[4]
Aliter 5. (a) Way 4	Any two of$\mathbf{i}:$ $1+\lambda=1+2 \mu$ $\mathbf{j}:$ $\lambda=3+\mu$ $\mathbf{k}:$ $-1=6-\mu$	Writes down any two of these equations	M1
	(1) \& (2) yields $\mu=3$	$\mu=3$	A1
	(3) $\mathrm{RHS}=6-3=3$	RHS of (3) = 3	A1
	(3) yields $-1 \neq 3$	Complete method giving rise to this explanation.	B1 $\sqrt{ }$
			[4]

edexcel

Candidates can score this mark if there is a complete method for finding the dot product between their vectors in the following cases:

Case 1: their $\mathrm{ft} \pm \overrightarrow{\mathrm{AB}}= \pm(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})$ and $\mathbf{d}_{1}=\mathbf{i}+\mathbf{j}+0 \mathbf{k}$
$\Rightarrow \cos \theta= \pm\left(\frac{3+4+0}{\sqrt{50} \cdot \sqrt{2}}\right)$

Case 4: their $\mathrm{ft} \pm \overrightarrow{\mathrm{AB}}= \pm(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})$ and $\mathbf{d}_{2}=\mathbf{2 i}+\mathbf{j}-\mathbf{k}$

$$
\Rightarrow \cos \theta= \pm\left(\frac{6+4-5}{\sqrt{50} \cdot \sqrt{6}}\right)
$$

Case 2: $\mathbf{d}_{1}=\mathbf{i}+\mathbf{j}+0 \mathbf{k}$
and $\mathbf{d}_{2}=\mathbf{2 i}+\mathbf{j}-\mathbf{k}$
$\Rightarrow \cos \theta=\frac{2+1+0}{\sqrt{2} \cdot \sqrt{6}}$

Case 3: $\mathbf{d}_{1}=\mathbf{i}+\mathbf{j}+0 \mathbf{k}$ and $\mathbf{d}_{2}=2(2 \mathbf{i}+\mathbf{j}-\mathbf{k})$
$\Rightarrow \cos \theta=\frac{4+2+0}{\sqrt{2} \cdot \sqrt{24}}$

Case 5: their $\mathrm{ft} \overrightarrow{\mathrm{OA}}=\mathbf{2 i}+\mathbf{1} \mathbf{j} \mathbf{1 k}$ and their $\mathrm{ft} \overrightarrow{\mathrm{OB}}=5 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}$
$\Rightarrow \cos \theta= \pm\left(\frac{10+5-4}{\sqrt{6} \cdot \sqrt{66}}\right)$
Note: If candidate use cases 2, 3, 4 and 5 they cannot gain the final three marks for this part.
Note: Candidate can only gain some/all of the final three marks if they use case 1.

Examples of awarding of marks M1M1A1 in 5.(b)

Example	Marks
$\sqrt{50} \cdot \sqrt{2} \cos \theta= \pm(3+4+0)$	M1M1A1 $($ Case 1)
$\sqrt{2} \cdot \sqrt{6} \cos \theta=3$	M1M0A0 (Case 2)
$\sqrt{2} \cdot \sqrt{24} \cos \theta=4+2$	M1M0A0 (Case 3)

edexcel

Note: The x and y coordinates must be the right way round.

A candidate who incorrectly differentiates $\tan ^{2} t$ to give $\frac{\mathrm{dx}}{\mathrm{d} t}=2 \sec ^{2} t$ or $\frac{\mathrm{dx}}{\mathrm{d} t}=\sec ^{4} t$ is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $\sqrt{ }$ (b) B1B1B1M1A0 cso. Note: cso means "correct solution only".
Note: part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b).

edexcel

Question Number	Scheme		Marks
6. (c)	$x=\tan ^{2} t=\frac{\sin ^{2} t}{\cos ^{2} t} \quad y=\sin t$		
Way 1	$x=\frac{\sin ^{2} t}{1-\sin ^{2} t}$	Uses $\cos ^{2} t=1-\sin ^{2} t$	M1
	$x=\frac{y^{2}}{1-y^{2}}$	Eliminates ' t ' to write an equation involving x and y.	M1
	$x\left(1-y^{2}\right)=y^{2} \Rightarrow x-x y^{2}=y^{2}$		
	$x=y^{2}+x y^{2} \Rightarrow x=y^{2}(1+x)$	Rearranging and factorising with an attempt to make y^{2} the subject.	ddM1
	$y^{2}=\frac{x}{1+x}$	$\frac{x}{1+x}$	A1
			[4]
Aliter 6. (c) Way 2	$\begin{aligned} 1+\cot ^{2} t & =\operatorname{cosec}^{2} t \\ & =\frac{1}{\sin ^{2} t}\end{aligned}$	Uses $1+\cot ^{2} t=\operatorname{cosec}^{2} t$	M1
		Uses $\operatorname{cosec}^{2} t=\frac{1}{\sin ^{2} t}$	M1 implied
	Hence, $\quad 1+\frac{1}{x}=\frac{1}{y^{2}}$	Eliminates ' t ' to write an equation involving x and y.	ddM1
	Hence, $y^{2}=1-\frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1-\frac{1}{(1+x)} \text { or } \frac{x}{1+x}$	A1
			[4]

$$
\frac{1}{1+\frac{1}{x}} \text { is an acceptable response for the final accuracy A1 mark. }
$$

edexcel

$\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final accuracy A1 mark.

edexcel

$$
\frac{1}{1+\frac{1}{x}} \text { is an acceptable response for the final accuracy A1 mark. }
$$

There are so many ways that a candidate can proceed with part (c). If a candidate produces a correct solution then please award all four marks. If they use a method commensurate with the five ways as detailed on the mark scheme then award the marks appropriately. If you are unsure of how to apply the scheme please escalate your response up to your team leader.

edexcel

Area $=\frac{1}{2} \times \frac{\pi}{20} \times\{0+2(0.44600+0.64359+0.81742)+1\}=0.3781$, gains B0M1A1A0

In (a) for $X=\frac{\pi}{16}$ writing $0.4459959 \ldots$ then 0.45600 gains B1 for awrt 0.44600 even though 0.45600 is incorrect.

In (b) vou can follow though a candidate's values from part (a) to award M1 ft, A1 ft
$25^{\text {th }}$ June 2007
Version 8: THE FINAL VERSION

edexcel

If a candidate gives the correct exact answer and then writes $1.088779 \ldots$, then such a candidate can be awarded A1 (aef). The subsequent working would then be ignored. (isw)

Beware: In part (c) the factor of π is not needed for the first three marks.
Beware: In part (b) a candidate can also add up individual trapezia in this way:
Area $\approx \frac{1}{2} \cdot \frac{\pi}{16}(\underline{0}+0.44600)+\frac{1}{2} \cdot \frac{\pi}{16}(\underline{0.44600+0.64359})+\frac{1}{2} \cdot \frac{\pi}{16}(\underline{0.64359+0.81742})+\frac{1}{2} \cdot \frac{\pi}{16}(\underline{0.81742+1})$

edexcel

$P=P_{0} e^{k t}$ written down without the first M1 mark given scores all four marks in part (a).

edexcel

Question Number	Scheme		Marks
8. (c)	$\begin{equation*} \frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t \quad \text { and } \quad t=0, P=P_{0} \tag{1} \end{equation*}$		
	$\int \frac{\mathrm{d} P}{P}=\int \lambda \cos \lambda t \mathrm{~d} t$	Separates the variables with $\int \frac{\mathrm{d} P}{P}$ and $\int \lambda \cos \lambda t \mathrm{~d} t$ on either side with integral signs not necessary.	M1
	$\ln P=\sin \lambda t ;(+c)$	Must see $\ln P$ and $\sin \lambda t$; Correct equation with/without + c.	A1
	When $t=0, P=P_{0} \Rightarrow \ln P_{0}=c$ (or $P=A e^{\sin 2 t} \Rightarrow P_{0}=A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\ln P=\sin \lambda t+\ln P_{0} \quad \Rightarrow e^{\ln P}=e^{\sin \lambda t+\ln P_{0}}=e^{\sin \lambda t} \cdot e^{\ln P_{0}}$		
	Hence, $P=P_{0} e^{\text {sin } 2 t}$	$P=P_{0} e^{\sin 2 t}$	A1
(d)	$P=2 P_{0} \& \lambda=2.5 \Rightarrow 2 P_{0}=P_{0} e^{\text {sin } 2.5 t}$		
	$\begin{aligned} & e^{\sin 2.5 t}=2 \Rightarrow \sin 2.5 t=\ln 2 \\ & \ldots \text { or } \ldots e^{\lambda t}=2 \Rightarrow \sin \lambda t=\ln 2 \end{aligned}$	Eliminates P_{0} and makes $\sin \lambda t$ or $\sin 2.5 t$ the subject by taking In's	M1
	$\begin{aligned} & t=\frac{1}{2.5} \sin ^{-1}(\ln 2) \\ & t=0.306338477 \ldots \end{aligned}$	Then rearranges to make t the subject. (must use $\sin ^{-1}$)	dM1
	$t=0.306338477 \ldots \times 24 \times 60=441.1274082 \ldots \text { minutes }$		
	$t=441 \mathrm{~min}$ or $t=7 \mathrm{hr} 21 \mathrm{mins}$ (to nearest minute)	awrt $t=\underline{441}$ or 7 hr 21 mins	A1
			[3]
			14 marks

$$
P=P_{0} e^{\text {sinit }} \text { written down without the first M1 mark given scores all four marks in part (c). }
$$

$25^{\text {th }}$ June 2007
Version 8: THE FINAL VERSION

edexcel

June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

$$
\underline{P=P_{0} e^{k t}} \text { written down without the first M1 mark given scores all four marks in part (a). }
$$

$P=P_{0} e^{\text {sin } \lambda t}$ written down without the first M 1 mark given scores all four marks in part (c).

edexcel

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark. ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
depM1* denotes a method mark which is dependent upon the award of M1*.
ft denotes "follow through"
cao denotes "correct answer only"
aef denotes "any equivalent form"

